МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ МОСКОВСКОЙ ОБЛАСТИ

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ МОСКОВСКОЙ ОБЛАСТИ «СЕРГИЕВО-ПОСАДСКИЙ ФИЗИКО-МАТЕМАТИЧЕСКИЙ ЛИЦЕЙ»

141300, Московская область, г. Сергиев Посад, ул. Карла Маркса, д.З. Тел.\ факс: (496) 540-45-48 E-mail: mo_spfml@mosreg.ru http://ФМЛ.РФ
Лицензия Министерства образования Московской области: 50 Л 01 № 0010064 от 18.10.2019 (регистрационный № 78184)

PACCMOTPEHO

Руководитель МО

учителей

естественного цикла

Шаткова Елена Васильевна

Протокол № 1 от «29» августа 2023 г. г.

СОГЛАСОВАНО

Заместитель директора

по УВР

Четайкина Галина Федоровна

Приказ №1 от «30» августа 2023 г. г.

УТВЕРЖДЕНС

Директор,

Макарова Ольга Алексеевна

Приказ №1 от «30» августа 2023 г. г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Физика. Углубленный уровень»

для обучающихся 10 - 11 классов

Сергиев Посад 2023 год

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по физике на уровне среднего общего образования разработана на основе положений и требований к результатам освоения основной образовательной программы, представленных в ФГОС СОО, а также с учётом федеральной рабочей программы воспитания и Концепции преподавания учебного предмета «Физика» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Программа по физике определяет обязательное предметное содержание, устанавливает рекомендуемую последовательность изучения тем и разделов учебного предмета с учётом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся. Программа по физике даёт представление о целях, содержании, общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Физика» на углублённом уровне.

Изучение курса физики углублённого уровня позволяет реализовать задачи профессиональной ориентации, направлено на создание условий для проявления своих интеллектуальных и творческих способностей каждым обучающимся, которые необходимы для продолжения образования в организациях профессионального образования по различным физико-техническим и инженерным специальностям.

В программе по физике определяются планируемые результаты освоения курса физики на уровне среднего общего образования: личностные, метапредметные, предметные (на углублённом уровне). Научно-методологической основой для разработки требований к личностным, метапредметным и предметным Федеральная рабочая программа результатам обучающихся, освоивших программу по физике на уровне среднего общего образования на углублённом уровне, является системно-деятельностный подход.

Программа по физике включает:

- 1) планируемые результаты освоения курса физики на углублённом уровне, в том числе предметные результаты по годам обучения;
 - 2) содержание учебного предмета «Физика» по годам обучения;
 - 3) тематическое планирование по годам обучения.

Программа по физике имеет примерный характер и может быть использована учителями физики для составления своих рабочих программ. Программа по физике не сковывает творческую инициативу учителей и предоставляет возможности для реализации различных методических подходов к преподаванию физики на углублённом уровне при условии сохранения обязательной части содержания курса.

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Школьный курс физики — системообразующий для естественно-научных учебных предметов, поскольку физические законы лежат в основе процессов и явлений, изучаемых химией, биологией, физической географией и астрономией. Использование и активное применение физических знаний определило характер и бурное развитие разнообразных технологий в сфере энергетики, транспорта, освоения космоса, получения новых материалов с заданными свойствами. Изучение физики вносит основной вклад в формирование естественно-научной картины мира обучающегося, в формирование умений применять научный метод познания при выполнении ими учебных исследований.

В основу курса физики на уровне среднего общего образования положен ряд идей, которые можно рассматривать как принципы его построения.

Идея целостности. В соответствии с ней курс является логически завершённым, он содержит материал из всех разделов физики, включает как вопросы классической, так и современной физики.

Идея генерализации. В соответствии с ней материал курса физики объединён вокруг физических теорий. Ведущим в курсе является формирование представлений о структурных уровнях материи, веществе и поле.

Идея гуманитаризации. Её реализация предполагает использование гуманитарного потенциала физической науки, осмысление связи развития физики с развитием общества, а также с мировоззренческими, нравственными и экологическими проблемами.

Идея прикладной направленности. Курс физики углублённого уровня предполагает знакомство с широким кругом технических и технологических приложений изученных теорий и законов. При этом рассматриваются на уровне общих представлений и современные технические устройства, и технологии.

Идея экологизации реализуется посредством введения элементов содержания, посвящённых экологическим проблемам современности, которые связаны с развитием техники и технологий, а также обсуждения проблем рационального природопользования и экологической безопасности.

Освоение содержания программы по физике должно быть построено на принципах системно-деятельностного подхода. Для физики реализация этих принципов базируется на использовании самостоятельного эксперимента как постоянно действующего фактора учебного процесса. Для углублённого уровня – это система самостоятельного ученического эксперимента, включающего фронтальные ученические опыты при изучении нового материала, лабораторные работы и работы практикума. При этом возможны два способа реализации физического практикума. В первом случае практикум проводится либо в конце 10 и 11 классов, либо после первого и второго полугодий в каждом из этих классов. Второй способ – это интеграция работ практикума в систему лабораторных работ, которые проводятся в процессе изучения раздела (темы). При этом под работами практикума понимается самостоятельное исследование, которое проводится по руководству свёрнутого, обобщённого вида без пошаговой инструкции. В программе по физике система ученического эксперимента, лабораторных работ и практикума представлена единым перечнем. Выбор тематики для этих видов ученических практических работ осуществляется участниками образовательного процесса исходя из особенностей поурочного планирования и оснащения кабинета физики. При этом обеспечивается овладение обучающимися умениями проводить прямые и косвенные измерения, исследования зависимостей физических величин и постановку опытов по проверке предложенных гипотез. Большое внимание уделяется решению расчётных и качественных задач. При этом для расчётных задач приоритетом являются задачи с явно заданной и неявно заданной физической моделью, позволяющие применять изученные законы и закономерности как из одного раздела курса, так и интегрируя применение знаний из разных разделов. Для качественных задач приоритетом являются задания на объяснение/предсказание протекания физических явлений и процессов в окружающей жизни, требующие выбора физической модели для ситуации практико-ориентированного характера.

В соответствии с требованиями ФГОС СОО к материально-техническому обеспечению учебного процесса курс физики углублённого уровня на уровне среднего общего образования должен изучаться в условиях предметного кабинета. В кабинете физики должно быть необходимое лабораторное оборудование для выполнения указанных в программе по физике ученических опытов, лабораторных работ и работ практикума, а также демонстрационное оборудование. Демонстрационное оборудование формируется в соответствии с принципом минимальной достаточности и обеспечивает постановку перечисленных в программе по физике ключевых демонстраций для исследования изучаемых явлений и процессов, эмпирических и фундаментальных законов, их технических применений.

Лабораторное оборудование для ученических практических работ формируется в виде тематических комплектов и обеспечивается в расчёте одного комплекта на двух

обучающихся. Тематические комплекты лабораторного оборудования должны быть построены на комплексном использовании аналоговых и цифровых приборов, а также компьютерных измерительных систем в виде цифровых лабораторий.

Основными целями изучения физики в общем образовании являются:

- 1) формирование интереса и стремления обучающихся к научному изучению природы, развитие их интеллектуальных и творческих способностей;
- 2) развитие представлений о научном методе познания и формирование исследовательского отношения к окружающим явлениям;
- 3) формирование научного мировоззрения как результата изучения основ строения материи и фундаментальных законов физики;
- 4) формирование умений объяснять явления с использованием физических знаний и научных доказательств;
- 5) формирование представлений о роли физики для развития других естественных наук, техники и технологий;
- 6) развитие представлений о возможных сферах будущей профессиональной деятельности, связанных с физикой, подготовка к дальнейшему обучению в этом направлении.

Достижение этих целей обеспечивается решением следующих задач в процессе изучения курса физики на уровне среднего общего образования:

- 1) приобретение системы знаний об общих физических закономерностях, законах, теориях, включая механику, молекулярную физику, электродинамику, квантовую физику и элементы астрофизики;
- формирование умений применять теоретические знания для объяснения физических явлений в природе и для принятия практических решений в повседневной жизни;
- 3) освоение способов решения различных задач с явно заданной физической моделью, задач, подразумевающих самостоятельное создание физической модели, адекватной условиям задачи, в том числе задач инженерного характера;
- 4) понимание физических основ и принципов действия технических устройств и технологических процессов, их влияния на окружающую среду; овладение методами самостоятельного планирования и проведения физических экспериментов, анализа и интерпретации информации, определения достоверности полученного результата;
- 5) создание условий для развития умений проектно-исследовательской, творческой деятельности;
- 6) развитие интереса к сферам профессиональной деятельности, связанной с физикой.

В соответствии с требованиями ФГОС СОО углублённый уровень изучения учебного предмета «Физика» на уровне среднего общего образования выбирается обучающимися, планирующими продолжение образования по специальностям физикотехнического профиля.

Общее число часов, рекомендованных для изучения физики (углубленный уровень) -340 часов: в 10 классе -170 часов (5 часов в неделю), в 11 классе -170 часов (5 часов в неделю).

Предлагаемый в программе по физике перечень лабораторных и практических работ является рекомендованным, учитель делает выбор проведения лабораторных работ и опытов с учётом индивидуальных особенностей обучающихся. В программе по физике каждого класса предлагается резерв времени, отводимый на вариативную часть программы, содержание которой формируется участниками образовательного процесса. Любая рабочая программа должна полностью включать в себя содержание данной программы по физике.

СОДЕРЖАНИЕ ОБУЧЕНИЯ

Механические колебания (20 часов)

Механические колебания. Характеристики колебательного движения. Гармонические колебания. Простейшие колебательные системы.

Физический маятник. Превращение и сохранение энергии при гармонических колебаниях. Сложение колебаний. Метод векторных диаграмм.

Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.

Основы молекулярно – кинетической теории. Законы идеального газа (17 часов)

Молекулярное строение вещества. Основные положения молекулярно - кинетической теории и их опытное обоснование.

Статистические закономерности. Вероятность события. Среднее значение случайной величины. Макро и микро - описание систем. Размеры и массы молекул. Скорости молекул. Распределение молекул по скоростям. Опыт Штерна.

Давление газа. Идеальный газ. Основное уравнение молекулярно - кинетической теории. Температура, ее физический смысл. Абсолютная температура. Абсолютный ноль температуры. Уравнение состояния идеального газа. Частные случаи уравнения состояния. Графики термодинамических процессов.

Газовые смеси. Закон Дальтона.

Термодинамика (25 часов)

Внутренняя энергия. Параметры состояния. Внутренняя энергия - параметр состояния. Количество теплоты. Работа газа. Первое начало термодинамики.

Теплоемкость. Теплоемкость газа. Зависимость теплоемкости от вида процесса. Теплоемкость стандартных термодинамических процессов. Распределение энергии по степеням свободы и теплоемкость многоатомного газа.

Тепловые двигатели. КПД тепловых двигателей. Второе начало термодинамики. Обратимые и необратимые процессы. Обратимость термодинамических процессов.

Идеальный тепловой двигатель. КПД идеального двигателя. Теорема Карно. Вечные двигатели первого и второго рода.

Свойства жидкостей и твердых тел (18 часов)

Границы применимости законов идеального газа. *Реальные газы. Уравнение Ван - дер - Ваальса.* Сжижение газов. Насыщенный и ненасыщенный пар. Зависимость давления и плотности насыщенного пара от температуры. Зависимость температуры кипения от давления. Критическая температура. Влажность. Измерение относительной влажности.

Поверхностные явления. Энергия поверхностного слоя. Сила поверхностного натяжения. Давление под искривленной поверхностью. Смачивание. Капиллярные явления.

Строение твердых тел. Кристаллические и аморфные тела. Типы кристаллических решеток. Дефекты кристаллов. Механические свойства твердых тел. Тепловое линейное и объемное расширение.

Кипение и плавление. Уравнение теплового баланса.

Электростатика (38 часов)

Электрический заряд. Природа электрического заряда. Элементарный электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Единица измерения электрического заряда.

Электрическое поле. Напряженность электрического поля. Силовые линии. Теорема Гаусса. Расчет электрических полей с помощью теоремы Гаусса.

Работа электрического поля. Консервативность сил электрического поля. Потенциальная энергия заряда в электрическом поле. Потенциал. Потенциальная энергия электрического взаимодействия. Энергия системы зарядов.

Разность потенциалов. Связь между разностью потенциалов и напряженностью электрического поля. Эквипотенциальные поверхности.

Проводники в электрическом поле. Энергия заряженного проводника.

Диэлектрики в электрическом поле. Наведенные связанные заряды. Механизмы поляризации диэлектриков. Диэлектрическая проницаемость.

Электроемкость. Конденсаторы. Емкость конденсатора. Энергия конденсатора. Соединение конденсаторов. Конденсаторные цепи. Энергия электрического поля. Зарядка конденсатора. Работа источника напряжения.

Постоянный ток (18 часов)

Проводник в постоянном электрическом поле. Сила тока. Плотность тока. Условия существования постоянного тока. Сторонние силы. Электродвижущая сила. Падение напряжения.

Сопротивление. Удельное сопротивление. Закон Ома. Закон Ома для полной цепи.

Зависимость сопротивления от температуры. Сверхпроводимость.

Разветвленные электрические цепи. Законы Кирхгофа. Метод узловых потенциалов.

Схемы с нелинейными элементами. Вольт-амперные характеристики.

Работа и мощность тока.

Токи в различных средах (13 часов)

Электрический ток в электролитах. Законы электролиза. Применение электролиза.

Электрический ток в газах. Виды самостоятельного разряда. Плазма.

Электрический ток в полупроводниках. Электрическая проводимость полупроводников. Собственная и примесная проводимость.р-n - переход.

Полупроводниковый диод. Транзистор. Электронная эмиссия. Вакуумный диод. Вольт - амперная характеристика вакуумного диода. Электронные пучки. Электронно-лучевая трубка.

Магнитное поле (10 часов)

Взаимодействие токов. Действие магнитного поля на рамку с током. Магнитное поле. Магнитная индукция. Линии магнитной индукции. Сила Ампера. Электроизмерительные приборы.

Сила Лоренца. Движение заряженных частиц в электрических и магнитных полях. Ускорители заряженных частиц.

Магнитные свойства вещества. Магнитная проницаемость. Парамагнетики, диамагнетики и ферромагнетики. Гипотеза Ампера. Природа ферромагнетизма. Применение ферромагнетиков.

Итоговое повторение (9 часов)

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№	Наименование раздела	Количество часов
1	Механические колебания.	20
2	Основы молекулярно-кинетической теории. Законы идеального газа.	17
3	Термодинамика.	25
4	Свойства жидкостей и твердых тел.	18
5	Электростатика.	38
6	Постоянный ток.	18
7	Токи в различных средах.	13
8	Магнитное поле.	10
9	Итоговое повторение.	9

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ФИЗИКЕ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания: сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

принятие традиционных общечеловеческих гуманистических и демократических ценностей;

готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;

умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением; готовность к гуманитарной и волонтёрской деятельности;

- 2) патриотического воспитания: сформированность российской гражданской идентичности, патриотизма; ценностное отношение к государственным символам, достижениям российских учёных в области физики и технике;
- 3) духовно-нравственного воспитания: сформированность нравственного сознания, этического поведения; способность оценивать ситуацию и принимать осознанные

решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного; осознание личного вклада в построение устойчивого будущего;

- 4) эстетического воспитания: эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;
- 5) трудового воспитания: интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы; готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;
- 6) экологического воспитания: сформированность экологической культуры, осознание глобального характера экологических проблем; планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества; Расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;
- 7) ценности научного познания: сформированность мировоззрения, соответствующего современному уровню развития физической науки; осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия.

Базовые логические действия: самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне; определять цели деятельности, задавать параметры и критерии их достижения; выявлять закономерности и противоречия в рассматриваемых физических явлениях; разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов; вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности; координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия; развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия: владеть научной терминологией, ключевыми понятиями и методами физической науки; владеть навыками учебно-исследовательской и деятельности в области физики, способностью и готовностью самостоятельному поиску методов решения задач физического содержания, применению различных методов познания; владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики; выявлять причинноследственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения; анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях; ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики; давать оценку новым ситуациям, оценивать приобретённый опыт; уметь переносить знания по физике в практическую область жизнедеятельности; уметь интегрировать знания из разных предметных областей; выдвигать новые идеи, предлагать оригинальные подходы и решения; ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией: владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления; оценивать достоверность информации; использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и

организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности; создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия: осуществлять общение на уроках физики и во внеурочной деятельности; распознавать предпосылки конфликтных ситуаций и смягчать конфликты; развёрнуто и логично излагать свою точку зрения с использованием языковых средств; понимать и использовать преимущества командной и индивидуальной работы; выбирать тематику и методы совместных действий с учётом общих интересов, и возможностей каждого члена коллектива; принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы; оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям; предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости; осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия.

Самоорганизация: самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи; самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений; давать оценку новым ситуациям; расширять рамки учебного предмета на основе личных предпочтений; делать осознанный выбор, аргументировать его, брать на себя ответственность за решение; оценивать приобретённый опыт; способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект: давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям; владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований; использовать приёмы рефлексии для оценки ситуации, выбора верного решения; уметь оценивать риски и своевременно принимать решения по их снижению; принимать мотивы и аргументы других при анализе результатов деятельности; принимать себя, понимая свои недостатки и достоинства; принимать мотивы и аргументы других при анализе результатов деятельности; признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике уровня среднего общего образования y обучающихся совершенствуется для предполагающий сформированность: самосознания, эмоциональный интеллект, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе; саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому; внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать, исходя из своих возможностей; эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию; социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

К концу обучения в 10 классе предметные результаты на углубленном уровне должны отражать сформированность у обучающихся умений:

понимать роль физики в экономической, технологической, экологической, социальной и этической сферах деятельности человека, роль и место физики в современной научной картине мира, значение описательной, систематизирующей, объяснительной и прогностической функций физической теории — механики, молекулярной физики и термодинамики, роль физической теории в формировании представлений о физической картине мира;

различать условия применимости моделей физических тел и процессов (явлений): инерциальная система отсчёта, абсолютно твёрдое тело, материальная точка, равноускоренное движение, свободное падение, абсолютно упругая деформация, абсолютно упругое и абсолютно неупругое столкновения, модели газа, жидкости и твёрдого (кристаллического) тела, идеальный газ, точечный заряд, однородное электрическое поле;

различать условия (границы, области) применимости физических законов, понимать всеобщий характер фундаментальных законов и ограниченность использования частных законов; анализировать и объяснять механические процессы и явления, используя основные положения и законы механики, при этом использовать математическое выражение законов, указывать условия применимости физических законов;

анализировать и объяснять тепловые процессы и явления, используя основные положения МКТ и законы молекулярной физики и термодинамики (связь давления идеального газа со средней кинетической энергией теплового движения и концентрацией его молекул, связь температуры вещества со средней кинетической энергией теплового движения его частиц, связь давления идеального газа с концентрацией молекул и его температурой, уравнение Менделеева-Клапейрона, первый закон термодинамики, закон сохранения энергии в тепловых процессах), при этом использовать математическое выражение законов, указывать условия применимости уравнения Менделеева-Клапейрона;

анализировать и объяснять электрические явления, используя основные положения и законы электродинамики (закон сохранения электрического заряда, закон Кулона, потенциальность электростатического поля, принцип суперпозиции электрических полей, при этом указывая условия применимости закона Кулона, а также практически важные соотношения: законы Ома для участка цепи и для замкнутой электрической цепи, закон Джоуля—Ленца, правила Кирхгофа, законы Фарадея для электролиза);

описывать физические процессы и явления, используя величины: перемещение, скорость, ускорение, импульс тела и системы тел, сила, момент силы, давление, потенциальная энергия, кинетическая энергия, механическая энергия, работа силы, центростремительное ускорение, сила тяжести, сила упругости, сила трения, мощность, энергия взаимодействия тела с Землёй вблизи её поверхности, энергия упругой деформации пружины, количество теплоты, абсолютная температура тела, работа в термодинамике, внутренняя энергия идеального одноатомного газа, работа идеального газа, относительная влажность воздуха, КПД идеального теплового двигателя;

электрическое поле, напряжённость электрического поля, напряжённость поля точечного заряда или заряженного шара в вакууме и в диэлектрике, потенциал электростатического поля, разность потенциалов, электродвижущая сила, сила тока, напряжение, мощность тока, электрическая ёмкость плоского конденсатора, сопротивление участка цепи с последовательным и параллельным соединением резисторов, энергия электрического поля конденсатора;

объяснять особенности протекания физических явлений: механическое движение, тепловое движение частиц вещества, тепловое равновесие, броуновское движение, диффузия, испарение, кипение и конденсация, плавление и кристаллизация,

направленность теплопередачи, электризация тел, эквипотенциальность поверхности заряженного проводника;

проводить исследование зависимости одной физической величины от другой с использованием прямых измерений, при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде графиков с учётом абсолютных погрешностей измерений, делать выводы по результатам исследования; проводить косвенные измерения физических величин, при этом выбирать оптимальный метод измерения, оценивать абсолютные и относительные погрешности прямых и косвенных измерений; проводить опыты по проверке предложенной гипотезы: планировать эксперимент, собирать экспериментальную установку, анализировать полученные результаты и делать вывод о статусе предложенной гипотезы;

соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, практикума и учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования; решать расчётные задачи с явно заданной и неявно заданной физической моделью: на основании анализа условия обосновывать выбор физической модели, отвечающей требованиям задачи, применять формулы, законы, закономерности и постулаты физических теорий при использовании математических методов решения задач, проводить расчёты на основании имеющихся данных, анализировать результаты и корректировать методы решения с учётом полученных результатов;

решать качественные задачи, требующие применения знаний из разных разделов курса физики, а также интеграции знаний из других предметов естественно-научного цикла: выстраивать логическую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления; использовать теоретические знания для объяснения основных принципов работы измерительных приборов, технических устройств и технологических процессов;

приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;

анализировать и оценивать последствия бытовой и производственной деятельности человека, связанной с физическими процессами, с позиций экологической безопасности, представлений о рациональном природопользовании, а также разумном использовании достижений науки и технологий для дальнейшего развития человеческого общества;

применять различные способы работы с информацией физического содержания с использованием современных информационных технологий, при этом использовать современные информационные технологии для поиска, переработки и предъявления учебной и научно-популярной информации, структурирования и интерпретации информации, полученной из различных источников, критически анализировать получаемую информацию и оценивать её достоверность как на основе имеющихся знаний, так и на основе анализа источника информации;

проявлять организационные и познавательные умения самостоятельного приобретения новых знаний в процессе выполнения проектных и учебно-исследовательских работ;

работать в группе с исполнением различных социальных ролей, планировать работу группы, рационально распределять деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы;

проявлять мотивацию к будущей профессиональной деятельности по специальностям физико-технического профиля.